Assessing The Role of Bioclimatic Variables in Shaping Diptera Biodiversity and Distribution in District Faisalabad, Punjab
Keywords:
diptera diversity, bioclimatic variables, species distribution modeling, principal component analysis (PCA), microclimate gradientsAbstract
Agricultural and climatic changes are reshaping insect communities globally, yet the role of bioclimatic factors in determining Diptera diversity remains underexplored. This study examined the effects of temperature, precipitation, humidity, and seasonality on Diptera occurrence across 14 sites in District Faisalabad, Pakistan. Field observations of 11 ecologically and medically relevant species were analyzed alongside 19 WorldClim bioclimatic variables. Principal Component Analysis (PCA) revealed that temperature (PC1) and moisture (PC2) accounted for 61% of the environmental variation. Sites were grouped into four clusters warm, humid, cool, wet, cool and dry, and hot, dry each supporting distinct Diptera assemblages. K-means clustering validated these ecological groupings, highlighting microclimatic gradients as key drivers of species composition. Warm–humid sites harbored the highest richness, while arid and cooler areas supported more specialized or generalist taxa. Correlation analysis showed strong positive associations between Diptera abundance and both Bio5 (maximum temperature) and Bio12 (annual precipitation), suggesting these as primary predictors of species richness. Overall, the findings underscore the importance of temperature and moisture thresholds in shaping Diptera communities and offer a framework for forecasting climate-induced distribution shifts and managing key fly species.
References
ABDO ASS, Md Rawi CS, Ahmad AH, Rosmahanie Madrus M. Biodiversity of stream insects in the Malaysian Peninsula: spatial patterns and environmental constraints. Ecological Entomology. 2013;38(3):238–249.
Ačanski J, Miličić M, Likov L, Milić D, Radenković S, Vujić A. Environmental niche divergence of species from Merodon ruficornis group (Diptera: Syrphidae). Archives of Biological Sciences. 2017;69(2):247–259.
Adler PH, Cheke RA, Post RJ. Evolution, epidemiology, and population genetics of black flies (Diptera: Simuliidae). Infection, Genetics and Evolution. 2010;10(7):846–865.
Ahmed KS, Volpato A, Day MF, Mulkeen CJ, O'Hanlon A, Carey J, et al. Linear habitats across a range of farming intensities contribute differently to dipteran abundance and diversity. Insect Conservation and Diversity. 2021;14(3):335–347.
Al-Khalaf AA, Nasser MG, Hosni EM. Global potential distribution of Sarcophaga dux and Sarcophaga haemorrhoidalis under climate change. Diversity. 2023;15(8):903.
Arya MK, Omanakuttan K, Pandey T. Flower visiting insects of the invasive Mexican daisy (Erigeron karvinskianus, DC) and its proximity effect on native flora in the Western Himalaya. Oriental Insects. 2025:1–31.
Bana JK, Sharma H, Kumar S, Singh P. Impact of weather parameters on population dynamics of oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) under south Gujarat mango ecosystem. Journal of Agrometeorology. 2017;19(1):78–80.
Bashir MA, Saeed S, Sajjad A, Ali M. Seasonal variations in abundance and diversity of insect pollinators in forest ecosystems of Southern Punjab, Pakistan. Pure and Applied Biology (PAB). 2021;4(3):441–452.
Basset Y, Miller SE, Gripenberg S, Ctvrtecka R, Dahl C, Leather SR, Didham RK. An entomocentric view of the Janzen-Connell hypothesis. Insect Conservation and Diversity. 2019;12(1):1–8.
Bedoya-Rodríguez FJ, Guevara-Fletcher CE, Pelegrin-Ramírez JS. Diversity analysis, distribution and abundance of mosquito (Diptera: Culicidae) assemblages at urban sector from southwestern Colombia. Biologia. 2025:1–12.
Blakeman E, Wilson AB, Romer S, Olin E, Scott C, Popescu V, Brodie B. Passively crowdsourcing images online for measuring broad-scale fly (Diptera) floral interactions and biodiversity. Journal of Pollination Ecology. 2023;35:180–193.
Bong LJ, Neoh KB, Jaal Z, Lee CY. Influence of temperature on survival and water relations of Paederus fuscipes (Coleoptera: Staphylinidae). Journal of Medical Entomology. 2013;50(5):1003–1013.
Brown ME, Treviño LK, Harrison DA. Ethical leadership: A social learning perspective for construct development and testing. Organizational Behavior and Human Decision Processes. 2005;97(2):117–134.
Burgio G, Sommaggio D, Marini M, Puppi G, Chiarucci A, Landi S, et al. The influence of vegetation and landscape structural connectivity on butterflies (Lepidoptera: Papilionoidea and Hesperiidae), carabids (Coleoptera: Carabidae), syrphids (Diptera: Syrphidae), and sawflies (Hymenoptera: Symphyta) in Northern Italy farmland. Environmental Entomology. 2015;44(5):1299–1307.
Carvalho LM, Jones C, Liebmann B. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate. 2004;17(1):88–108.
Cerasoli F, Iannella M, D’Alessandro P, Biondi M. Comparing pseudo-absences generation techniques in Boosted Regression Trees models for conservation purposes: A case study on amphibians in a protected area. PLoS One. 2017;12(11):e0187589.
Changbunjong T, Chaiphongpachara T, Weluwanarak T. Species discrimination of Stomoxys flies S. bengalensis, S. calcitrans, and S. sitiens (Diptera: Muscidae) using wing geometric morphometrics. Animals. 2023;13(4):647.
Chen Q, Duan Y, Wang X, Zheng X, Lu W. Insights into pupal development of Bactrocera dorsalis: factors influencing eclosion. Scientific Reports. 2024;14(1):27981.
Colzani E, Siqueira T, Suriano MT, Roque FO. Responses of aquatic insect functional diversity to landscape changes in Atlantic forest. Biotropica. 2013;45(3):343–350.
Couret J, Benedict MQ. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae). BMC Ecology. 2014;14:1–15.
D’Agostino ER, Vivero R, Romero L, Bejarano E, Hurlbert AH, Comeault AA, Matute DR. Phylogenetic climatic niche conservatism in sandflies (Diptera: Phlebotominae) and their relatives. Evolution. 2022;76(10):2361–2374.
de Oca-Aguilar ACM, de Luna E, Ibáñez-Bernal S, Rebollar-Téllez EA. Head shape variations between populations of the sand fly Lutzomyia cruciata (Diptera: Phlebotominae) from two Neotropical biogeographic provinces. Zoologischer Anzeiger. 2024.
Françoso E, Zuntini AR, Carnaval AC, Arias MC. Comparative phylogeography in the Atlantic Forest and Brazilian savannas: Pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees. BMC Evolutionary Biology. 2016;16:1–16.
Frelich LE, Peterson RO, Dovčiak M, Reich PB, Vucetich JA, Eisenhauer N. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate–boreal forest. Philos Trans R Soc B Biol Sci. 2012;367(1605):2955–2961.
Gerecke R, Cantonati M, Spitale D, Stur E, Wiedenbrug S. The challenges of long-term ecological research in springs in the northern and southern Alps: indicator groups, habitat diversity, and medium-term change.
Ghosh-Harihar M. Distribution and abundance of foliage-arthropods across elevational gradients in the east and west Himalayas. Ecological Research. 2013;28:125–130.
Gornostaev NG, Lyupina YV, Lazebny OE, Kulikov AM. Seasonal dynamics of fruit flies (Diptera: Drosophilidae) in Natural Parks of Moscow City, Russia. Insects. 2024;15(6):398.
Grzywacz A, Ogiela J, Tofilski A. Identification of Muscidae (Diptera) of medico-legal importance by means of wing measurements. Parasitology Research. 2017;116:1495–1504.
Gull-e-Fareen A, Bodlah I, Bodlah MA, Rasheed MT, Ali H, Asif M. Colour and distributional pattern of Callaspidia notata (Boyer de Fonscolombe, 1832) (Hymenoptera: Figitidae: Aspicerinae) from Pakistan. 2021.
Hanafi-Bojd AA, Khoobdel M, Soleimani-Ahmadi M, Azizi K, Aghaei Afshar A, Jaberhashemi SA, et al. Species composition of sand flies (Diptera: Psychodidae) and modeling the spatial distribution of main vectors of cutaneous leishmaniasis in Hormozgan Province, Southern Iran. J Med Entomol. 2018;55(2):292–299.
Hernández-Ortiz V, Dzul-Cauich JF, Madora M, Coates R. Local climate conditions shape the seasonal patterns of the Diptera community in a tropical rainforest of the Americas. Neotrop Entomol. 2022;51(4):499–513.
Hesami N, Abai MR, Vatandoost H, Alizadeh M, Fatemi M, Ramazanpour J, Hanafi-Bojd AA. Using ecological niche modeling to predict the spatial distribution of Anopheles maculipennis sl and Culex theileri (Diptera: Culicidae) in Central Iran. J Arthropod Borne Dis. 2019;13(2):165.
Hill MP, Terblanche JS. Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex. PLoS One. 2014;9(2):e90121.
Himawan T, Rizali A. Diversity and species composition of fruit flies (Diptera: Tephritidae) in Lombok Island, Indonesia. Biodiversitas J Biol Divers. 2021;22(10).
Hosseini SH, Allah-Kalteh E, Sofizadeh A. The effect of geographical and climatic factors on the distribution of Phlebotomus papatasi (Diptera: Psychodidae) in Golestan Province, an endemic focus of zoonotic cutaneous leishmaniasis in Iran, 2014. J Arthropod Borne Dis. 2021;15(2):225.
Hoxha I, Trájer AJ, Dvorak V, Halada P, Šupić J, Obwaller AG, et al. Phlebotomine sand flies (Diptera: Psychodidae) of Bosnia and Herzegovina: distribution, ecology and environmental preferences. Acta Tropica. 2024;260:107393.

Downloads
Additional Files
Published
Data Availability Statement
Data supporting the findings of this study are available from the corresponding author upon reasonable request.
Issue
Section
Categories
License
Copyright (c) 2025 Ujala Hanif, Maryam Riasat, Zubda Ashfaq, Muhammad Shahid, Rida Younas , Iqra, Naureen Rana, Tehreem Shakoor , Nawaz Haider Bashir, Muhammad Naeem , Huanhuan Chen (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.