Influence of Environmental Factors on the Mosquito Vector Habitat Distribution in Urban Areas of Faisalabad, Punjab

Authors

  • Sania Shammas Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan. Author
  • Maryam Riasat Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan. Author
  • Rida Younas Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan Author
  • Naureen Rana Department of Zoology, Faculty of Engineering and Applied Sciences, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan. Author
  • Nawaz Haider Bashir College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China. Author
  • Muhammad Naeem College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China Author
  • Huanhuan Chen College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China Author

Keywords:

Mosquito vectors, spatial distribution, GIS, dengue, Aedes aguptii, urban areas, Faisalabad, punjab, pakistan

Abstract

The viruses that cause malaria, Dengue hemorrhagic fever, and Rift Valley fever are primarily spread by mosquitoes. Globally, mosquito-borne diseases pose a serious threat to public health, particularly in crowded cities. The goal of the current study was to update knowledge about the mosquito (Diptera: Culicidae) fauna of Punjab region, Pakistan's District Faisalabad, and forecast the distribution of the larvae of the most important mosquito vectors in this area. Environmental factors such as water sources, land use, temperature, and humidity were recorded at each collection location. A perspective for the geographic distribution of dengue vectors in the metropolitan areas of Faisalabad was 

created using GIS-based spatial analytic tools after the data was gathered. The number of mosquito larvae was assessed in connection with the physiochemical characteristics (pH & TDS) of breeding grounds. Mosquito larvae were collected from January 2024 until December 2024. Aedes aegypti was the most important vector discovered in Faisalabad. To predict the species distribution of Aedes aegypti in the district of Faisalabad, 19 bioclimatic variables were combined with the data from the collection. More than 100 locations yielded more than 1800 mosquito larvae. The northeastern region of the Faisalabad district was identified as having the best suited lands. The region that was least conducive to the presence of Aedes aegypti was the southwest. Precipitation factor (bio8) contributed the most in the presence of this vector, accounting for over 40%, followed by bio19, which contributed 20%.

References

Abdel-Dayem, M. S., Annajar, B. B., Hanafi, H. A., & Obenauer, P. J. (2012). The potential distribution of Phlebotomus papatasi (Diptera: Psychodidae) in Libya based on ecological niche model. Journal of Medical Entomology, 49(3), 739-745.

Agarwal, S. A., Sikarwar, S. S., & Sukumaran, D. (2012). Application of remote sensing & GIS in risk area assessment for mosquito borne diseases - A case study in a part of Gwalior City (M. P.). International Journal of Advanced Technology & Engineering Research, 2(1), 1-4.

Ahmad, H., Ali, A., Fatima, S. H., Zaidi, F., Khisroon, M., Rasheed, S. B., Ullah, I., Ullah, S., & Shakir, M. (2020). Spatial modeling of dengue prevalence and kriging prediction of dengue outbreak in Khyber Pakhtunkhwa (Pakistan) using presence only data.

Stochastic Environmental Research and Risk Assessment, 34(7), 1023-1036.

Ahmad, R., Ali, W. N. W. M., Nor, Z. M., Ismail, Z., Hadi, A. A., Ibrahim, M. N., & Lim, L. H. (2011). Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia. Malaria Journal, 10, 1-12.

Al Ahmed, A. M., Al Kuriji, M. A., Kheir, S. M., Al Sogoor, D. A., & Salama, H. A. (2010). Distribution and seasonal abundance of mosquitoes (Diptera: Culicidae) in the Najran Region, Saudi Arabia. Stud Dipterol, 17, 13-27.

Alahmad, A. M., Sallam, M. F., Khuriji, M. A., Kheir, S. M., & Azari-Hamidian, S. (2011). Checklist and pictorial key to fourth-instar larvae of mosquitoes (Diptera: Culicidae) of Saudi Arabia. Journal of Medical Entomology, 48(4), 717-737.

Alahmed, A. M., Kheir, S. M., Kuriji, M. A., & Sallam, M. F. (2011). Breeding habitats characterization of Anopheles mosquito (Diptera: Culicidae) in Najran Province, Saudi Arabia. Journal of the Egyptian Society of Parasitology, 41(2), 275-288.

Alahmed, A. M., Naeem, M., Kheir, S. M., & Sallam, M. F. (2015). Ecological distribution modeling of two malaria mosquito vectors using geographical information system in Al-Baha Province, Kingdom of Saudi Arabia. Pakistan Journal of Zoology, 47(6), 1797-1806.

Alahmed, A. M., Shaalan, E. A., Aboul-Soud, M. A. M., Tripet, F., & Al-Khedhairy, A. A. (2011). Mosquito vectors survey in the Al-Ahsaa district of eastern Saudi Arabia. Journal of Insect Science, 11(3), 335--370.

Ali, S. A., & Ahmad, A. (2019). Mapping of mosquito-borne diseases in Kolkata Municipal Corporation using GIS and AHP based decision making approach. Spatial Information Research, 27(3), 351-372.

Al-Thukair, A., Jemal, Y., & Nzila, A. (2022). Influence of climatic factors on the abundance and profusion of mosquitoes in Eastern Province, Saudi Arabia. In Mosquito Research-Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies. IntechOpen, 23(5), 103-115.

Ammar, M., Moaaz, M., Yue, C., Fang, Y., Zhang, Y., Shen, S., & Deng, F. (2025). Emerging Arboviral Diseases in Pakistan: Epidemiology and Public Health Implications. Viruses, 17(2), 232.

Amer, A., & Mehlhorn, H. (2006). Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitology research, 99, 478-490.

Anderson, R. P., & Martínez-Meyer, E. (2004). Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 116, 167-179.

Anderson, R. P., Gómez-Laverde, M., & Peterson, A. T. (2002). Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography, 11, 131-141.

Andreadis, T. G., Anderson, J. F., Vossbrinck, C. R., & Main, A. J. (2004). Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999– 2003. Vector-Borne & Zoonotic Diseases, 4(4), 360-378.

Anyamba, A., & Tucker, C. J. (2005). Analysis of Sahelian vegetation dynamics using NOAAAVHRR NDVI data from 1981–2003. Journal of Arid Environments, 63, 569-614.

Bagavan, A., Rahuman, A. A., Kamaraj, C., & Geetha, K. (2008). Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitology research, 103, 223-229.

Barbet-Massin, M., Rome, Q., Villemant, C., & Courchamp, F. (2018). Can species distribution models really predict the expansion of invasive species? PLoS ONE, 13(3), 1-14.

Beck, L. R., Rodriguez, M. H., Dister, S. W., et al. (1994). Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. American Journal of Tropical Medicine and Hygiene, 51(3), 271–280.

Beck, L. R., Rodriguez, M. H., Dister, S. W., et al. (1997). Assessment of a remote sensing– based model for predicting malaria transmission risk in villages of Chiapas, Mexico. American Journal of Tropical Medicine and Hygiene, 56(1), 99–106.

Booman, M., Durrheim, D. N., Grange, K. La., Martin, C., Mabuza, A. M., Zitha, A., Mbokazi, F. M., Fraser, C., & Sharp, B. L. (2000). Using a geographical information system to plan a malaria control programme in South Africa. Bulletin of the World Health Organization, 78, 1438-1444.

Brooker, S., Hay, S. I., Issae, W., Hall, A., Kihamia, C. M., Lwambo, N. J., Wint, W., Rogers, D. J., & Bundy, D. A. (2001). Predicting the distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Tropical Medicine & International Health, 6(12), 998-1007.

Brownstein, J. S., Holford, T. R., Fish, D. (2004). Enhancing West Nile virus surveillance, United States. Emerging Infectious Diseases, 10(6), 1129–1133.

Brownstein, J. S., Rosen, H., Purdy, D., Miller, J. R., Merlino, M., Mostashari, F., & Fish, D. (2002). Spatial analysis of West Nile virus: rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne and Zoonotic Diseases, 2(3), 157-164.

Carter, R., Mendis, K. N., & Roberts, D. (2000). Spatial targeting of interventions against malaria. Bulletin of the World Health Organization, 78, 1401-1411.

Chinery, W. A. (1984). Effects of ecological changes on the malaria vectors Anopheles funestus and the Anopheles gambiae complex of mosquitoes in Accra, Ghana. The American Journal of Tropical Medicine and Hygiene, 87, 75-81.

Cleckner, H. L., Allen, T. R., & Scott Bellows, A. (2011). Remote sensing and modeling of mosquito abundance and habitats in Coastal Virginia, USA. Remote Sensing, 3(12), 2663-2681.

Cocu, N., Conrad, K., Harrington, R., & Rounsevell, M. D. A. (2005). Analysis of spatial patterns at a geographical scale over north-western Europe from point-referenced aphid count data. Bulletin of entomological research, 95(1), 47-56.

Coetzee, M., Craig, M., & Le Sueur, D. (2000). Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitology Today, 16(2), 74-77.

Cohuet, A., Harris, C., Robert, V., & Fontenille, D. (2010). Evolutionary forces on Anopheles:

What makes a malaria vector? Trends in Parasitology, 26(3), 130-136.

Conley, A. K., Fuller, D. O., Haddad, N., Hassan, A. N., Gad, A. M., & Beier, J. C. (2014). Modeling the distribution of the West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East North Africa. Parasites & Vectors, 7, 289.

Craig, M. H., Snow, R. W., & Le Sueur, D. (1999). A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitology Today, 15(3), 105-111.

Cross, E. R., Newcomb, W. W., & Tucker, C. J. (1996). Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. The American journal of tropical medicine and hygiene, 54(5), 530536.

Dambach, P., Machault, V., Lacaux, J. P., Vignolles, C., Sie, A., & Sauerborn, R. (2012). Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa. International Journal of Health Geographics, 11, 8.

DeGroote, J. P., Sugumaran, R., Brend, S. M., Tucker, B. J., & Bartholomay, L. C. (2008). Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA. International Journal of Health Geographics, 7, 19.

Dister, S. W., Fish, D., Bros, S. M., Frank, D. H., & Wood, B. L. (1997). Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. The American journal of tropical medicine and hygiene, 57(6), 687-692.

Diuk-Wasser, M. A., Bogayoko, M., Sogoba, N., et al. (2004). Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM sensor data. International Journal of Remote Sensing, 25(2), 359–376.

Diuk-Wasser, M. A., Brown, H. E., Andreadis, T. G., & Fish, D. (2006). Modeling the spatial distribution vectors for West Nile virus in Connecticut, USA. EcoHealth, 6(3), 1-13.

Dutta, P., Bhattacharyya, D. R., Sharma, C. K., Khan, S. A., & Mahanta, J. (1998). Distribution of potential dengue vectors in major townships along the national highway and trunk roads of north east India. Southeast Asian Journal of Tropical Medicine and Public Health, 29, 173-176.

Eisen, L., & Eisen, R. J. (2011). Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Annual review of entomology, 56, 41-61.

Elfadil, A. A., Hasab-Allah, K. A., & Dafa-Allah, O. M. (2006). Factors associated with rift valley fever in south-west Saudi Arabia. Revue Scientifique et Technique (International Office of Epizootics), 25(3), 1137–1145.

Elith*, J., H. Graham*, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., & E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151.

Elnaiem, D. E., Schorschev, J., et al. (2003). Risk mapping of visceral leishmaniasis: The role of local variation in rainfall and altitude on the presence and incidence of kala-azar in eastern Sudan. American Journal of Tropical Medicine and Hygiene, 68(1), 10-17.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861874.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.

Foley, D. H., Klein, T. A., Kim, H. C., Brown, T., Wilkerson, R. C., & Rueda, L. M. (2010). Validation of ecological niche models for potential malaria vectors in the Republic of Korea. Journal of the American Mosquito Control Association, 26(2), 210-213.

Fossog, B., Ayala, D., Acevedo, P., Kengne, P., Ngomo Abeso Mebuy, I., Makanga, B., Magnus, J., Awono-Ambene, P., Njiokou, F., Pombi, M., Antonio-Nkondjio, C., Paupy, C., Besansky, N. J., & Costantini, C. (2015). Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evolutionary Applications, 8(4), 326-345.

Gakhar, S. K., Sharma, R., & Sharma, A. (2013). Population genetic structure of malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Indian Journal of Experimental Biology, 51, 273-279.

Garcia-Rejon, J. E., Blitvich, B. J., Farfan-Ale, J. A., Loroño-Pino, M. A., Chi Chim, W. A., Flores-Flores, L. F., & Beaty, B. J. (2008). Dengue virus infected Aedes aegypti in the home environment. American Journal of Tropical Medicine and Hygiene, 79, 940-950. Ghebreyesus, T. A.,

Haile, M., Getachew, A., Alemayehu, T., Witten, K. H., Medhin, A., & Byass, P. (1998). Pilot studies on the possible effects on malaria of small-scale irrigation dams in Tigray regional state, Ethiopia. Journal of Public Health Medicine, 20(2), 238-240.

Glick, J. I. (1992). Illustrated key to the female Anopheles of southwestern Asia and Egypt (Diptera: Culicidae). Mosquito Systematics Journal, 24, 125-153.

Goodchild, M. F. (1992). Geographical Information Science. International Journal of Geographical Information Systems, 6(1), 31–45.

Goodchild, M. F. (2009). Geographic information systems and science: Today and tomorrow. Annals of GIS, 15(1), 3-9.

Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews, 11(3), 480-496.

Guerra, M. A., Walker, E. D., & Kitron, U. (2001). Canine surveillance system for Lyme borreliosis in Wisconsin and northern Illinois: geographic distribution and risk factor analysis. American Journal of Tropical Medicine and Hygiene, 65(6), 546-552.

Guerra, M., Walker, E., Jones, C., et al. (2002). Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerging Infectious Diseases, 8(3), 289-297.

Guisan, A., & Zimmerman, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3), 147–186.

Gurgel-Gonçalves, R., Galvao, C., Costa, J., & Peterson, A. T. (2012). Geographic distribution of Chagas disease vectors in Brazil based on ecological niche modeling. Journal of tropical medicine, 2012(1), 705326.

Harbach, R. E. (1985). Pictorial keys to the genera of mosquitoes, subgenera of Culex, and the species of Culex (Culex) occurring in southwestern Asia and Egypt, with a note on the subgeneric placement of Culex deserticola (Diptera: Culicidae). Mosquito Systematics,

17, 83-107.

Harbach, R. E. (1988). The mosquitoes of the subgenus Culex in southwestern Asia and Egypt (Diptera: Culicidae). Contributions of American Entomological Institute, 24, 1-240.

Hay, S. I., Omumbo, J. A., Craig, M. H., & Snow, R. W. (2000). Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Advances in Parasitology, 47, 173-215.

Hay, S. I., Packer, M. J., & Rogers, D. J. (1997). The impact of remote sensing on the study and control of invertebrate intermediate hosts and vectors for disease. International Journal of Remote Sensing, 18, 2899-2930.

Hay, S. I., Sinka, M. E., Okara, R. M., Kabaria, C. W., Mbithi, P. M., Tago, C. C., & Godfray, H. C. J. (2010). Developing global maps of the dominant Anopheles vectors of human malaria. PLoS medicine, 7(2).

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785.

Holeva-Eklund, W. M., Young, S. J., Will, J., Busser, N., Townsend, J., & Hepp, C. M. (2022). Species distribution modeling of Aedes aegypti in Maricopa County, Arizona from 2014 to 2020. Frontiers in Environmental Science, 10.

Huang, J., Walker, E. D., Otienoburu, P. E., Amimo, F., Vulule, J., & Miller, J. R. (2006). Laboratory tests of oviposition by the African malaria mosquito, Anopheles gambiae, on dark soil as influenced by presence or absence of vegetation. Malaria Journal, 5, 88.

Hunt, R. H., Fuseini, G., Knowles, S., Stiles-Ocran, J., Verster, R., Kaiser, M. L., Choi, K. S., Koekemoer, L. L., & Coetzee, M. (2011). Insecticide resistance in malaria vector mosquitoes at four localities in Ghana, West Africa. Parasites & Vectors, 4, 107.

Hunter, J. M., Rey, L., & Scott, D. (1982). Man-made lakes and man-made diseases. Towards a policy resolution. Social Science & Medicine, 16, 1127-1145.

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.

Jansen, C. C., & Beebe, N. W. (2010). The dengue vector Aedes aegypti: what comes next?

Microbes and Infection, 12(4), 272-279.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106, 620630.

Jeffery, J. A., Ryan, P. A., Lyons, S. A., Thomas, P. T., & Kay, B. H. (2002). Spatial distribution of vectors of Ross River virus and Barmah Forest virus on Russell Island, Moreton Bay, Queensland. Australian Journal of Entomology, 41(4), 329-338.

Jemal, Y., & Al-Thukair, A. A. (2018). Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia. Saudi Journal of Biological Sciences, 25(8), 1593-1602.

Kazmi, J. H., & Pandit, K. (2001). Disease and dislocation: The impact of refugee movements on the geography of malaria in NWFP, Pakistan. Social Science & Medicine, 52(7), 1043-1055.

Khaliq, A., Chaudhry, M. N., Sajid, M. A., Ashraf, U., Aleem, R., & Shahid, S. (2021). GIS based mapping and spatial distribution of tuberculosis in Punjab, Pakistan. Epidemiology Science, 11(402), 1-6.

Kheir, S. M., Alahmed, A. M., Al Kuriji, M. A., & Al Zubyani, S. F. (2010). Distribution and seasonal activity of mosquito in Al Madinah Al Munwwarh, Saudi Arabia. Journal of the Egyptian Society of Parasitology, 40(1), 215-227.

Kija, B., Mweya, C., Mwita, M., & Fumagwa, R. (2013). Prediction of suitable habitat for potential invasive plant species Parthenium hysterophorus in Tanzania: A short communication. International Journal of Ecosystem, 3, 82-89.

Kolimenakis, A., Heinz, S., Wilson, M. L., Winkler, V., Yakob, L., Michaelakis, A., ... & Horstick, O. (2021). The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—A systematic review. PLoS neglected tropical diseases, 15(9), e0009631.

Kitron, U., & Spielman, A. (1989). Suppression of transmission of malaria through source reduction: Antianopheline measures applied in Israel, the United States, and Italy. Review of Infectious Diseases, 11, 391-406.

Kitron, U., Okeno, L. H., Hungerford, L. L., et al. (1996). Spatial analysis of the distribution of tsetse flies in the Lambwe Valley, Kenya, using Landsat TM satellite imagery and GIS. Journal of Animal Ecology, 65(3), 371-380.

Kitron, U., Pener, H., Costin, C., Orshan, L., Greenberg, Z., & Shalom, U. (1994). Geographic information system in malaria surveillance: mosquito breeding and imported cases in Israel, 1992. American Journal of Tropical Medicine and Hygiene, 50, 550-556.

Kolivras, K. N. (2006). Mosquito habitat and dengue risk potential in Hawaii: A conceptual framework and GIS application. Professional Geographer, 58(2), 139-154.

Kolivras, K. N. (2010). Changes in dengue risk potential in Hawaii, USA, due to climate variability and change. Climate Research, 42(1), 1–11. https://doi.org/10.3354/cr00861

Kulkarni, M. A., Desrochers, R. E., & Kerr, J. T. (2010). High resolution niche models of malaria vectors in northern Tanzania: a new capacity to predict malaria risk? PLoS One, 5(2).

Larson, S. R., DeGroote, J. P., Bartholomay, L. C., & Sugumaran, R. (2010). Ecological niche modeling of potential West Nile virus vector mosquito species in Iowa. Journal of Insect Science, 10, 110.

Lin, T. H., & Lu, L. C. (1995). Population fluctuation of Culex tritaeniorhynchus in Taiwan. Chinese Journal of Entomology, 15, 1-9.

Linthicum, K. J., Anyamba, A., Tucker, C. J., Kelley, P. W., Myers, M. F., & Peters, C. J. (1999). Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science, 285, 397-400.

Losos, J. B., Leal, M., Glor, R. E., de Queiroz, K., Hertz, P. E., Schettino, L. R., Lara, A. C. (2003). Niche lability in the evolution of a Caribbean lizard community. Nature, 424(6948), 542–545.

Luckhart, S., Vodovotz, Y., Cui, L., & Rosenberg, R. (1998). The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proceedings of the National Academy of Sciences of the USA, 95, 5700-5705.

Mackenzie, J. S., et al. (1996). Dengue in Australia. Journal of Medical Microbiology, 45, 159161.

Madani, T. A., Al-Mazrou, Y. Y., Al-Jeffri, M. H., Mishkhas, A. A., Al-Rabeah, A. M., Turkistani, A. M., Al-Sayed, M. O., Abodahish, A. A., Khan, A. S., Ksiazek, T. G., & Shobokshi, O. (2003). Rift Valley Fever epidemic in Saudi Arabia: Epidemiological, clinical, and laboratory characteristics. Clinical Infectious Diseases, 37(8), 1084-1092.

Mahabir, R. S., Severson, D. W., & Chadee, D. D. (2012). Impact of road networks on the distribution of dengue fever cases in Trinidad, West Indies. Acta Tropica, 123, 178183.

Malik, M. A., Sajid, M. S., Iqbal, Z., & Saqib, M. (2023). Association of climatic determinants with the magnitude of Aedes aegypti in selected agro-geoclimatic zones of Punjab, Pakistan, 6(3), 133-141.

Masuoka, P., Klein, T. A., Kim, H. C., Claborn, D. M., Achee, N., Andre, R., & Grieco, J. (2010). Modeling the distribution of Culex tritaeniorhynchus to predict Japanese encephalitis distribution in the Republic of Korea. Geospatial Health, 5(1), 45-57.

Mathew, N., Anitha, M. G., Bala, T. S. L., Sivakumar, S. M., Narmadha, R., & Kalyanasundaram, M. (2009). Larvicidal activity of Saraca indica, Nyctanthes arbortristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitology research, 104, 1017-1025.

Mattingly, P. F., & Knight, K. L. (1956). The mosquitoes of Arabia. International Bulletin of British Museum and Natural History (Entomology), 4(3), 89-141.

Maurya, P., Mohan, L., Sharma, P., Batabyal, L., & Srivastava, C. N. (2007). Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomological research, 37(3), 153-156.

Meade, M. S., Florin, J. W., & Gesler, W. M. (1998). Medical geography. New York, NY: Guilford Press.

Mehmood, A., Naeem, M., Raza, A. B. M., Majeed, M. Z., Ullah, M. I., Riaz, M. A., ... & Raza, W. (2024). Faunal and habitat distribution of mosquitoes (Diptera: Culicidae) in Chakwal, Punjab, Pakistan. Sarhad Journal of Agriculture, 40(2), 463-469.

Miranda, C., Marques, C. C. A., & Massa, J. L. (1998). Satellite remote sensing as a tool for the analysis of the occurrence of American cutaneous leishmaniasis in Brazil. Revista de Saúde Pública, 32(5), 455-463.

Moncayo, A. C., Edman, J. D., & Finn, J. T. (2000). Application of geographic information technology in determining risk of eastern equine encephalomyelitis virus transmission. Journal of the American Mosquito Control Association, 16(1), 28–35.

Moretti, R., Lim, J. T., Ferreira, A. G. A., Ponti, L., Giovanetti, M., Yi, C. J., ... & Ross, P. A. (2025). Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens, 14(3), 285.

Mughini-Gras, L., Mulatti, P., Severini, F., Boccolini, D., Romi, R., Bongiorno, G., & Busani, L. (2014). Ecological niche modelling of potential West Nile virus vector mosquito species and their geographical association with equine epizootics in Italy. Ecohealth, 11, 120-132.

Murty, U. S., Rao, M. S., & Arunachalam, N. (2010). The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh. Indian Journal of Vector Borne Diseases, 47(1), 26-32.

Naeem, M., Alahmed, A. M., Kheir, S. M., & Sallam, M. F. (2016). Spatial distribution modeling of Stegomyia aegypti and Culex tritaeniorhynchus (Diptera: Culicidae) in AlBahah Province, Kingdom of Saudi Arabia. Tropical Biomedicine, 33(2), 295-310.

Nakhapakorn, K., & Tripathi, N. K. (2005). An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. International journal of health geographics, 4, 1-13.

Nansen, C., Campbell, J. F., Phillips, T. W., & Mullen, M. A. (2003). The impact of spatial structure on the accuracy of contour maps of small data sets. Journal of Economic Entomology, 96(6), 1617-1625.

Nayab, G. E., Rahman, R. U., Hanan, F., Khan, I., & Fahim, M. (2025). Metagenomic exploration of the bacteriome reveals natural Wolbachia infections in yellow fever mosquito Aedes aegypti and Asian tiger mosquito Aedes albopictus. bioRxiv, 34, 133180.

Omumbo, J., Ouma, J., Rapuoda, B., et al. (1998). Mapping malaria transmission intensity using geographical information systems (GIS): an example from Kenya. Annals of Tropical Medicine and Parasitology, 92(1), 7-21.

Ortega-Huerta, M. A., & Townsend, P. A. (2008). Modelling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana de Biodiversidad, 79, 205-216.

Palaniyandi, M., & Palaniyandi, M. (2014). Web mapping GIS: GPS under the GIS umbrella for Aedes species dengue and chikungunya vector mosquito surveillance and control Rapid Epidemiological Mapping of Lymphatic Filariasis in Southern India View project Application of Remote Sensing and Geographic. International Journal of Mosquito Research, 1(3), 18-25.

Parham, P. E., Pople, D., Christiansen-Jucht, C., Lindsay, S., Hinsley, W., & Michael, E. (2012). Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malaria Journal, 11, 271.

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117.

Peterson, A. T., Soberon, J., & Sanchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285(5431), 1265–1267.

Pherez, F. M. (2007). Factors affecting the emergence and prevalence of vector borne infections (VBI) and the role of vertical transmission (VT). Journal of Vector Borne Diseases, 44(3), 157-163.

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.

Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A Maximum Entropy Approach to Species Distribution Modelling. Proceedings of the 21st International Conference on Machine Learning, 655-662.

Porphyre, T., Bicout, D. J., & Sabatier, P. (2005). Modelling the abundance of mosquito vectors versus flooding dynamics. Ecological Modelling, 183, 173-181.

Reisen, W., Lothrop, H. (1999). Effects of sampling design on the estimation of adult mosquito abundance. Journal of the American Mosquito Control Association, 15(1), 105–114.

Rejmankova, E., Roberts, D. R., Pawley, A., et al. (1995). Predictions of adult Anopheles albimanus densities in villages based on distances to remotely sensed larval habitats. American Journal of Tropical Medicine and Hygiene, 53(5), 482-488.

Ritchie, S. A., Hanna, J. N., Hills, S. L., Piispanen, J. P., John, W., McBride, H., Pyke, A., & Spark, R. L. (2002). Dengue control in North Queensland, Australia: case recognition and selective indoor residual spraying. Dengue Bulletin, 26, 7-13.

Rochlin, I., Ninivaggi, D. V., Hutchinson, M. L., & Farajollahi, A. (2013). Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PloS One, 8, 145--180.

Rogers, D. J. (2000). Satellites, space, time and the African trypanosomiases. Advances in Parasitology, 47, 129–171.

Rogers, D. J., Randolph, S. E., Snow, R. W., & Hay, S. I. (2002). Satellite imagery in the study and forecast of malaria. Nature, 415, 710-715.

Rohani, A., Wan Najdah, W. M., Zamree, I., Azahari, A. H., Mohd Noor, I., et al. (2010). Habitat characterization and mapping of Anopheles maculatus (Theobald) mosquito larvae in malaria endemic areas in Kuala Lipis, Pahang, Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 41(4), 821-830.

Ryan, P. A., Lyons, S. A., Alsemgeest, D., Thomas, P., & Kay, B. H. (2004). Spatial statistical analysis of adult mosquito (Diptera: Culicidae) counts: an example using light trap data, in Redland Shire, southeastern Queensland, Australia. Journal of medical entomology, 41(6), 1143-1156.

Rydzanicz, K., Hoffman, K., Jawień, P., Kiewra, D., & Becker, N. (2011). Implementation of Geographic Information System (GIS) in an environment friendly mosquito control programme in irrigation fields in Wroclaw (Poland). European Mosquito Bulletin, May 2014, 1–12.

Rydzanicz, K., Lonc, E., Kiewra, D., DeChant, P., Krause, S., & Becker, N. (2009). Evaluation of three microbial formulations against Culex pipiens pipiens larvae in irrigation fields in Wrocław, Poland. Journal of the American Mosquito Control Association, 25, 140148.

Saleem, A., & Mahmood, S. (2023). Spatio-temporal assessment of urban growth using multistage satellite imageries in Faisalabad, Pakistan. Journal of Urban and Regional Analysis, 3(1), 10-18.

Sallam, M. F., Al Ahmad, A. M., Abdel-Dayem, M. S., & Abdullah, M. A. R. (2013). Ecological niche modeling and land cover risk areas for Rift Valley Fever vector Culex tritaeniorhynchus Giles in Jazan, Saudi Arabia. PLoS One, 8(6).

Siria, D. J., Batista, E. P. A., Opiyo, M. A., Melo, E. F., Sumaye, R. D., Ngowo, H. S., Eiras, A. E., & Okumu, F. O. (2018). Evaluation of a simple polytetrafluoroethylene (PTFE)based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory. Parasites & Vectors, 11(1), 1-10.

Smith, L. B., Kasai, S., & Scott, J. G. (2016). Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology, 133, 1-12.

Smith, T., Charlwood, J. D., Takken, W., Tanner, M., & Spiegelhalter, D. J. (1995). Mapping the densities of malaria vectors within a single village. Acta Tropica, 59(1), 1-18.

Su, M. D. (1994). Framework for application of geographic information system to the monitoring of dengue vectors. Kaohsiung Journal of Medical Science, 10, 94-101.

Surveillance report. (2007). Jeddah, Saudi Arabia, Ministry of Health, Department of Communicable Diseases.

Tedrow, C. A. (2010). Using remote sensing, ecological niche modeling, and geographic information systems for Rift Valley fever risk assessment in the United States (Doctoral dissertation, George Mason University).

Thomson, M. C., Connor, C. J., Milligan, P., et al. (1997). Mapping malaria risk in Africa: what can satellite data contribute? Parasitology Today, 13(8), 313–318.

Thomson, M. C., Connor, S. J., Milligan, P. J. M., & Flasse, S. P. (1996). The ecology of malaria—as seen from Earth-observation satellites.

Annals of Tropical Medicine & Parasitology, 90(3), 243-264.

Thomson, M. C., Elnaiem, D. A., Ashford, R. W., & Connor, S. J. (1999). Towards a kala azar risk map for Sudan: mapping the potential distribution of Phlebotomus orientalis using digital data of environmental variables (vol 4, pg 105, 1999). Tropical Medicine & International Health, 4(3), 240-241.

Tucker, C. J., & Nicholson, S. E. (1999). Variations in the size of the Sahara Desert from 1980– 1997. AMBIO: A Journal of the Human Environment, 28, 587-591.

Ullah, U. N., Hafeez, F., Ali, S., Arshad, M., Akram, W., Ali, A., ... & AlMunqedhi, B. M. (2023). Distribution of mosquito species in various agro-ecological zones of Punjab. Journal of King Saud University-Science, 35(8), 102874.

Vanek, M. J., Shoo, B., Mtasiwa, D., Kiama, M., Lindsay, S. W., Fillinger, U., Kannady, K., Tanner, M., & Killeen, G. F. (2006). Community-based surveillance of malaria vector larval habitats: a baseline study in urban Dar es Salaam, Tanzania. BMC Public Health, 6, 154.

Veerakumar, K., & Govindarajan, M. (2014). Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitology Research, 113(11), 4085-4096.

WHO, L. F. (1992). The Disease and Its Control: 5th Report of the WHO Expert Committee on Filariasis (No. 821, p. 56). Technical Report Series.

Wiley, E. O., McNyset, K. M., Peterson, A. T., Robins, C. R., & Stewart, A. M. (2003). Niche modeling and geographic range predictions in the marine environment using a machinelearning algorithm. Oceanography, 16, 120–127.

Wilke, A. B. B., & Marrelli, M. T. (2015). Paratransgenesis: A promising new strategy for mosquito vector control. Parasites and Vectors, 8(1), 1–9.

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., Group NPSDW. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.

Wood, B. L., Beck, L., Washino, R., et al. (1992). Estimating high mosquito-producing rice fields using spectral and spatial data. International Journal of Remote Sensing, 13(15), 2813–2826.

Wood, B. L., Washino, R., Palchick, S., et al. (1991b). Spectral and spatial characterization of rice field mosquito habitat. International Journal of Remote Sensing, 12(4), 621–626.

Wood, B., Washino, R., Beck, L., et al. (1991a). Distinguishing high and low anopheline producing rice fields using remote sensing and GIS technologies. Preventive Veterinary Medicine, 11(4), 277–288.

World Health Organization. (2022). Guidance for national strategic planning for tuberculosis. World Health Organization

World Health Organization. (2004). Integrated Vector Management: Strategic Framework for the Eastern Mediterranean Region 2004–2010. The WHO Regional Office for the Eastern Mediterranean, Cairo.

World Health Organization. (2009). Dengue: Guidelines for diagnosis, treatment, prevention and control (New ed.).

World Health Organization. (2010). In: Crompton, D. W. T. (Ed.), Working to Overcome the Global Impact of Neglected Tropical Diseases. WHO Press, Geneva, Switzerland.

Zheng, L., Saunders, R. D. C., Fortini, D., Della Torre, A., Coluzzi, M., Glover, D. M., & Kafatos, F. C. (1991). Low-resolution genome map of the malaria mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 88(24), 11187–11191.

Zhou, G., Munga, S., Minakawa, N., Githeko, A. K., & Yan, G. (2007). Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. The American Journal of Tropical Medicine and Hygiene, 77(1), 29–35

Mosquito

Published

2025-07-01

How to Cite

1.
Shammas S, Riasat M, Younas R, Rana N, Bashir NH, Naeem M, et al. Influence of Environmental Factors on the Mosquito Vector Habitat Distribution in Urban Areas of Faisalabad, Punjab. Pak. J. Zool. Sci. [Internet]. 2025 Jul. 1 [cited 2025 Sep. 19];1(1):14. Available from: https://journals.ijsmartpublishing.com/index.php/PJZS/article/view/v1i1.003

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.