Effects of Silver Nitrate (AgNO₃) Nanoparticles on the Growth Performance and Liver of Cyprinus carpio
Keywords:
water pollutant, adverse effects, AgNO3 NPs, aquatic life, AntimicrobialAbstract
Water pollutants that contaminate water supplies and harm aquatic life all over the world and impact on their growth and physical parameters. Silver nanoparticles have wide use in industries because of their electrical, optical, and antibacterial qualities. The aquatic life has suffered as a result of its widespread use and application. The objective of the study was to investigate the effect of various concentrations of silver nitrate nanoparticles on growth performance and liver profile of Cyprinus carpio. In experimental design, total 60 fishes (15 fingerling/ aquarium) were subjected to different concentrations of AgNO3 NPs 0 mg/L (Tₒ serve as control) group), 50 mg/L (T1), 100 mg/L (T2) and 150 mg/L T3). The treatments were compared by applying one way Analysis of variance and variation among mean was evaluated by applying Duncan’s Multiple Range Test (DMRT) in statistical software R (Version 4.3.3). Results showed that effect of silver nitrate nanoparticles on fish growth rate are toxic and showed non-significant (P>0.05) variation in average weight, specific growth rate and condition factor while, significant (P<0.05) in weight gain, average length and length gain and liver profile (bilirubin, albumin, total protein, alanine transaminase, alkaline phosphatase and aspartate aminotransferase) of Cyprinus carpio. It can be concluded that silver nitrate nanoparticles at higher concentration (150 mg/L) in T3 have significant (P<0.05) toxic effect on fish growth rate and liver profile of Cyprinus carpio.
References
Alrumman, S.A., El-kott, A.F. and Kehsk, M.A. (2016). Water pollution: Source and treatment. American Journal of Environmental Engineering, 6(3), 88-110.
Amal, M. N. A., & Zamri-Saad, M. (2011). Streptococcosis in tilapia (Oreochromis niloticus): a review, 195-206.
Bakshi, S., He, Z. L., & Harris, W. G. (2015). Natural nanoparticles: implications for the environment and human health. Critical Reviews in Environmental Science and Technology, 45(8), 861-904.
Bourquin, S., Mercuzot, M., Pellenard, P., Beccaletto, L., Schnyder, J., Baudin, F., & Gand, G. (2022). Reconsidering Carboniferous–Permian continental paleoenvironments in eastern equatorial Pangea: facies and sequence stratigraphy investigations in the Autun Basin (France). International Journal of Earth Sciences, 111(5), 1663-1696.
Das, S., Chakraborty, J., Chatterjee, S., & Kumar, H. (2018). Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environmental Science: Nano, 5(12), 2784-2808.
Dube, E., & Okuthe, G. E. (2023). Engineered nanoparticles in aquatic systems: Toxicity and mechanism of toxicity in fish. Emerging Contaminants, 9(2), 100–152.
Fajordo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., & De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185-200.
Khorshidi, Z., Moghanlou, K. S., Imani, A., Behrouzi, S., Policar, T., & Rahimnejad, S. (2021). Interactive Effects of Curcumin and Silver Nanoparticles on Growth, Hemato-Biochemical Parameters, Digestive Enzymes Activity and Histology of Common Carp (Cyprinus carpio). Microscopy Research and Technique, 87(10), 353-364.
Khoshnamvand, M., Hanachi, P., Ashtiani, S., & Walker, T. R. (2021). Toxic effects of polystyrene nanoplastics on microalgae Chlorella vulgaris: Changes in biomass, photosynthetic pigments and morphology. Chemosphere, 280(2), 130-145.
Kumar, R., Sankhla, M. S., Kumar, R., & Sonone, S. S. (2021). Impact of pesticide toxicity in the aquatic environment. Biointerface Research in Applied Chemistry, 11(3), 10131-10140.
Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., & Lead, J. R. (2008). Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1825–1851.
Liu, P. T., Stenger, S., Li, H., Wenzel, L., Tan, B. H., Krutzik, S. R., & Modlin, R. L. (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 311(5768), 1770-1773.
Lin, K. F., Cheng, H. M., Hsu, H. C., Lin, L. J., & Hsieh, W. F. (2015). Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chemical Physics Letters, 409(4–6), 208–211.
Malhotra, S., Welling, M. N., Mantri, S. B., & Desai, K. (2016). In vitro and in vivo antioxidant, cytotoxic, and anti‐chronic inflammatory arthritic effect of selenium nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(5), 993–1003.
Malhotra, N., Ger, T. R., Uapipatanakul, B., Huang, J. C., Chen, K. H. C., & Hsiao, C. D. (2020). Review of copper and copper nanoparticle toxicity in fish. Nanomaterials, 10(6), 11-26.
Mangla, D., Abbasi, A., Aggarwal, S., Manzoor, K., Ahmad, S., & Ikram, S. (2019). Effective removal of “non-biodegradable” pollutants from contaminated water. Metal oxide-based photocatalyst for the degradation of organic pollutants in water, 159(4), 483-503.
Matranga, V., & Corsi, I. (2012). Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Marine environmental research, 76(31), 32-40.
Mercuzot, M., Bourquin, S., Pellenard, P., Beccaletto, L., Schnyder, J., Baudin, F.,& Gand, G. (2022). Reconsidering Carboniferous–Permian continental paleoenvironments in eastern equatorial Pangea: facies and sequence stratigraphy investigations in the Autun Basin (France). International Journal of Earth Sciences, 111(5), 1663-1696.
Mishra, A., Kumari, M., Pandey, S., Chaudhry, V., Gupta, K. C., & Nautiyal, C. S. (2014). Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresource Technology, 166(22), 235–242.
Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., & Abbasi,
B. H. (2020). Application of nanotechnology in agriculture and refinement of environmental pollutants. J. Nanotech, 11(1), 18-26.
Naguib, M., Mahmoud, U. M., Mekkawy, I. A., & Sayed, A. E. D. H. (2020). Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; Biochemical, histopathological, and histochemical studies. Toxicology Reports, 7(88), 133-141.
Noor, R., Maqsood, A., Baig, A., Pande, C. B., Zahra, S. M., Saad, A., & Singh, S. K. (2023). A comprehensive review on water pollution, South Asia Region: Pakistan. Urban Climate, 48(66), 101-413.
Nti, E. K., Cobbina, S. J., Attafuah, E. E., Senanu, L. D., Amenyeku, G., Gyan, M. A., & Safo, A. R. (2023). Water pollution control and revitalization using advanced technologies: Uncovering artificial intelligence options towards environmental health protection, sustainability and water security. Heliyon, 9(7), 445-555.
Oliveira, M., Ribeiro, A., Hylland, K., & Guilhermino, L. (2013). Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecological indicators, 34(1), 641-647.
Onuegbu, U. C., Agarwal, A., & Singh, N. B. (2018). Growth Performance of Cultured African Catfish (C. gariepinus) Fingerlings in the Presence of Nano and Macro CuO Feed Supplements. Journal of Scientific & Industrial Research, 77(1), 499-503.
Rahman, A. U., Nazir, S., Irshad, R., Tahir, K., ur Rehman, K., Islam, R. U., & Wahab, Z. (2023). Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids, 32(1), 114-455.
Rasheed, A., Iqbal, K. J., Safdar, A., Nasir, A., Jabeen, R., Tara, N., & Almarzoug, M. H. (2023). Toxicological effects of zinc oxide nanoparticles on hemato-biochemical profile of common carp (Cyprinus carpio). Journal of King Saud University-Science, 35(7), 102-835.
Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(6), 1-28.
Vali, S., Mohammadi, G., Tavabe, K. R., Moghadas, F., & Naserabad, S. S. (2023). The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicology and environmental safety, 194(1), 110-353.
Wang, H., Thorling, C. A., Liang, X., Bridle, K. R., Grice, J. E., Zhu, Y., & Roberts, M. S. (2015). Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. Journal of Materials Chemistry B, 3(6), 939-958.
Yilmaz, A., Ekiz, H., Gültekin, I., Torun, B., Barut, H., Karanlik, S., & Cakmak, I. (2020). Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc‐deficient calcareous soils. Journal of Plant Nutrition, 21(10), 2257–2264.

Downloads
Published
Data Availability Statement
All data are included in the manuscript and supplementary materials.
Issue
Section
Categories
License
Copyright (c) 2025 Tehreem Shakoor, Rida Younas, Maryam Riasat, Naureen Rana, Muhammad Saail Abbas, Nawaz Haider Bashir, Muhammad Naeem, Huanhuan Chen (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.